LESIA Observatoire de Paris-PSL CNRS vopdc cdpp Sorbonne Université cnes Université de Paris

Effect of an interplanetary coronal mass ejection on Saturn’s radio emission. Supplementary material

Friday 16 February 2024, by Baptiste Cecconi

This collection supplements: Cecconi et al. (2022), Effect of an interplanetary coronal mass ejection on Saturn’s radio emission. Frontiers in Astronomy and Space Sciences, 9(800279). https://doi.org/10.3389/fspas.2022.800279

Link to data repository

Description

Autoplot (Faden et al., 2010) configuration (.vap) files
Two Autoplot configuration files are available:

3Dview (Génot et al., 2018) files

  • icme-skr-3dview.mov: 3Dview generated movie, showing the Cassini trajectory during the studied interval. The Cassini/MAG magnetic field vector is plotted along the trajectory, with a rainbow color map for the magnetic field amplitude. The received SKR RH integrated power time series (on the 10 to 1000 kHz band) is also plotted along the trajectory, in the orbit plane, with a white-blue color map for the power values. The magnetopause location is also displayed, using the (Kanani et al., 2010) model, with the dynamic pressure input provided by 3dview from (Tao et al., 2005).
  • icme-skr-3dview.3dv: 3Dview configuration file to reproduce icme-skr-3dview.mov.

TOPCAT (Taylor, 2005) files

  • README.txt: Details on how to use the following files.
  • ENLIL-AMDA.txt: A STILTS script that can be used to reproduce figure 6.
  • ENLIL-AMDA-extended.txt: A STILTS script that can be used to reproduce figure 6, with an extended time span (90 days instead of 30 days).
  • ENLIL-AMDA.fits: A TOPCAT session FITS file containing several tables: (i) the ENLIL solar wind parameters from the CCMC modelling run; (ii) the 1D-MHD propagated solar wind parameters (Tao et al., 2005); (iii) the SKR emitted power of its RH component, from the Cassini/RPWS/SKR dataset (Lamy et al., 2009), with a temporal resolution of 600 seconds; (iv) the same dataset with a resolution of 6000 seconds; and (v) the measured magnetic field (Dougherty et al., 2004), with a 60 seconds temporal resolution. Datasets (ii) to (v) have been transferred from AMDA to TOPCAT thanks to the SAMP protocol (Génot et al., 2014; Taylor et al., 2015). Upon loading this file into TOPCAT, a set of predefined data selections and computed variables will be available to the user.
  • ENLIL-AMDA.xml: The same content as in the previous item, exported from TOPCAT using VOTable format.

Coverage and sampling

Time range : 2014-11-06 to 2014-12-05
Spectral range :

  • 3 kHz to 1 MHz (Electromagnetic waves),
  • 0.8 to 4.7 MeV (Electrons)

Location: Saturn

Acknowledgements

BC acknowledges support from Observatoire de Paris, CNRS/INSU (Centre National de la Recherche Scientifique / Institut des Sciences de l’Univers) and CNES (Centre National d’Etudes Spatiales). OW was supported by ESA (European Space Agency). CMJ’s work at DIAS was supported by the Science Foundation Ireland Grant 18/FRL/6199. BS-C acknowledges support through UK-STFC grant ST/S000429/1.

BC was also supported by PADC and EPN2024-RI. The Europlanet 2024 Research Infrastructure (EPN2024-RI) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149.

References

  • Cecconi et al. (2022), Effect of an interplanetary coronal mass ejection on Saturn’s radio emission. Frontiers in Astronomy and Space Sciences, 9(800279). https://doi.org/10.3389/fspas.2022.800279
  • Dougherty, M K, S Kellock, D J Southwood, A Balogh, E J Smith, B T Tsurutani, et al. 2004 The Cassini Magnetic Field Investigation. Space Sci. Rev., 114, 331–383. doi:10.1007/s11214-004-1432-2
  • Faden, J., Weigel, R. S., Merka, J., and Friedel, R. H. W. 2010. Autoplot: a browser for scientific data on the web. Earth Sci. inform., 3, 41–49. doi:10.1007/s12145-010-0049-0.
  • Génot, V., N André, B Cecconi, M Bouchemit, E Budnik, N Bourrel, et al. 2014. Joining the yellow341hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools. Astronomy and Computing, 7, 62–70. doi:10.1016/j.ascom.2014.07.007.
  • Génot, V, L Beigbeder, D Popescu, N Dufourg, M Gangloff, M Bouchemit, S Caussarieu, et al. 2018. Science Data Visualization in Planetary and Heliospheric Contexts with 3DView. Planet. Space Sci. 150, 111-130. doi:10.1016/j.pss.2017.07.007.
  • Kanani, S J, C S Arridge, G H Jones, A N Fazakerley, H J McAndrews, N Sergis, S M Krimigis, et al. 2010. A New Form of Saturn’s Magnetopause Using a Dynamic Pressure Balance Model, Based on in-Situ, Multi-Instrument Cassini Measurements. J. Geophys. Res. 115 (A6): A06207. doi:10.1029/2009JA014262.
  • Lamy, L, B Cecconi, and P Zarka. 2009 Cassini/RPWS/HFR SKR Data Collection, PADC/MASER. doi:10.25935/ZKXB-6C84.
  • Tao, C, R Kataoka, H Fukunishi, Y Takahashi, and T Yokoyama. 2005. Magnetic Field Variations in the Jovian Magnetotail Induced by Solar Wind Dynamic Pressure Enhancements. J. Geophys. Res. 110 (A11): A11208. doi:10.1029/2004JA010959.
  • Taylor, M B 2005. TOPCAT & STIL: Starlink Table/VOTable Processing Software. ASP Conference Series, 346, 29–33. [PDF]
  • Taylor, M B, T Boch, J Taylor 2015. SAMP, the Simple Application Messaging Protocol: Letting applications talk to each other. Astronomy and Computing 11, 81–90. doi:10.1016/j.ascom.2014.12.007.

0 | 10 | 20 | 30 | 40 | 50 | 60 | 70