LESIA Observatoire de Paris-PSL CNRS vopdc cdpp Sorbonne Université cnes Université de Paris

Juno/Waves estimated flux density Collection

Friday 30 April 2021, by Baptiste Cecconi, Corentin Louis, Philippe Zarka

This collection contains Juno/Waves processed datasets with the method described in Louis et al. 2021 (submitted to JGR, doi).

Link to data repository

Description

This datasets contain the Juno/Waves estimated flux density based on Cassini/RPWS measurements at Jupiter.

How are the flux density estimated?
The steps to derive the flux density are the following :

  • Use times series from PDS data in linear scale
  • Apply FFT filtering to remove interferences
  • Subtract a background (calculated from dB values) in linear scale
  • For LFR and HFR-High sub-receivers:
    • Correct for 1/R2 dependence
    • Select data intervals of 4 consecutive Jovian rotation with 15° < Latitudemagnetic < 15° and Distance > 30 RJ (same configuration than Cassini)
    • Build median 1% and 50% occurrence spectra and match with Cassini-RPWS and Voyager-PRA ones (Zarka 1992, Zarka et al. 2004) to derive a gain table between 3.5 kHz and 40.5 MHZ.
    • Extrapolate the gains down to 1 kHz
  • For the HFR-Low sub-receiver:
    • No 1/R2 dependence correction
    • Select data acquired during the ±2 hours around perijoves (when signal is observed by this sub-receiver)
    • Use the continuity of the signal between the LFR-High, HFR-Low and HFR-High sub-receiver to determine the HFR-Low gains.

Once the gains have been obtain, the steps to estimate the density flux are the following :

  • Use PDS data in linear scale, resample to 1 second
  • Apply an FFT-filtering by selecting the first eight harmonic of the spacecraft spin—period, with a width of δf=7% of the frequency around the peaks
  • Apply the gains of Table 1 (3rd row) which gives local-estimated flux densities
  • Optionally, correct for 1/R2 dependence to normalize the flux to a constant distance. This should not be done e.g. when studying local wave Electric-field, but should be done when studying the statistical latitudinal distribution of the radio beaming, as in the Louis et al. (2021) study.
  • Optionally subtract the time-independent background in linear scale of Table 1 (4th row)

A complete description of the methodology used to estimate the flux density can be found in Louis et al. (2021, submitted to JGR, doi).

List of Datasets

  • IDL save files
    • dataset at a temporal resolution of 1 second or 15 seconds containing the estimated flux density data with the intensity values in linear (ZLINCAL variable)
  • CDF files
    • dataset at a temporal resolution of 1 second, containing the estimated flux density data with the intensity values in linear (data variable), the gain, the background and the background standard deviation values.
  • Quicklook

Rules of use

  • We kindly request the authors of any communications and publications using these data to let us know about them, include minimal citation to the reference below and appropriate acknowledgements whenever needed.
  • References: Louis et al., 2021 (submitted to JGR, doi)
  • Acknowledgements: see the acknowledgement field

Link to the data at PDS

Acknowledgements
The MASER Juno/Waves CDR collection has been calculated by C. Louis, P. Zarka, W. Kurth, K. Dabidin, P.-A. Lampson, F. Magalhaes and A. Boudouma. The authors acknowledge the Observatoire de Paris, CNES, CNRS for funding and supporting this work and the University of Iowa and the Juno/Waves team for providing access to the Juno/Waves data accessible online from PDS at https://doi.org/10.17189/1519708

Contact
Any question or request should be addressed to contact.maser@obspm.fr

Appendix

Table 1
LFR-Low
Waves channel Frequency (kHz) Gain Background (V2.m-2.Hz-1)
16 1.00100 666.59 1.761e-14
17 1.12300 666.59 1.182e-14
18 1.26950 666.59 9.001e-15
19 1.41600 666.59 8.984e-15
20 1.58690 666.59 4.692e-15
21 1.78220 666.59 3.276e-15
22 2.00200 666.59 2.204e-15
23 2.24610 666.59 1.535e-15
24 2.51470 666.59 1.060e-15
25 2.83200 666.59 7.794e-16
26 3.17380 666.59 5.505e-16
27 3.54000 666.59 4.130e-16
28 3.97950 666.59 3.072e-16
29 4.46780 666.59 2.548e-16
30 5.00490 666.59 2.089e-16
31 5.61520 764.43 1.836e-16
32 6.29880 795.81 1.625e-16
33 7.08010 779.93 1.458e-16
34 7.95900 712.70 1.310e-16
35 8.93550 604.70 1.120e-16
36 10.0100 539.08 1.160e-16
37 11.2300 502.31 1.126e-16
38 12.6220 445.65 1.094e-16
39 14.1600 373.30 1.037e-16
40 15.8690 304.05 9.698e-17
41 17.7980 239.54 1.016e-16
42 19.9710 200.98 1.165e-16
LFR-High
Waves channel Frequency (kHz) Gain Background (V2.m-2.Hz-1)
43 19.9580 375.13 3.675e-17
44 22.3390 357.63 3.520e-17
45 25.0850 334.44 3.381e-17
46 28.1980 319.79 3.259e-17
47 31.6770 290.99 3.159e-17
48 35.5220 258.77 3.067e-17
49 39.9170 235.64 2.860e-17
50 44.8610 209.35 2.766e-17
51 50.1710 184.94 2.789e-17
52 56.2130 163.79 2.830e-17
53 63.1710 146.09 2.834e-17
54 70.8620 132.19 2.804e-17
55 79.4680 121.48 2.765e-17
56 89.1720 125.29 2.948e-17
57 100.160 131.34 2.850e-17
58 112.430 124.92 2.731e-17
59 126.160 138.19 3.343e-17
60 141.540 169.76 3.791e-17
HFR-Low
Waves channel Frequency (kHz) Gain Background (V2.m-2.Hz-1)
61 140.140 169.76 2.617e-14
62 157.230 161.71 5.888e-14
63 177.730 154.05 4.424e-14
64 198.240 146.75 3.062e-14
65 222.170 139.79 6.993e-14
66 249.510 133.17 1.962e-14
67 280.270 126.85 4.308e-14
68 314.450 120.84 9.860e-15
69 352.050 115.11 1.031e-14
70 396.480 109.66 1.606e-14
71 447.750 104.46 1.461e-14
72 502.440 99.510 1.478e-14
73 563.960 94.793 2.654e-14
74 632.320 90.300 3.145e-14
75 707.520 86.020 2.517e-14
76 796.390 81.943 2.922e-14
77 895.510 78.060 3.516e-14
78 1001.50 74.360 4.271e-14
79 1121.10 70.835 8.534e-14
80 1261.20 67.478 6.657e-14
81 1415.00 64.280 2.537e-14
82 1585.90 61.233 3.051e-14
83 1780.80 58.331 2.383e-14
84 1999.50 55.566 2.424e-14
85 2242.20 52.933 5.176e-14
86 2515.60 50.424 2.815e-14
87 2823.20 48.034 1.479e-14
HFR-High
Waves channel Frequency (kHz) Gain Background (V2.m-2.Hz-1)
88 3500.00 45.757 1.588e-17
89 4500.00 54.413 1.491e-17
90 5500.00 31.990 2.985e-17
91 6500.00 47.236 2.720e-17
92 7500.00 162.44 9.192e-18
93 8500.00 123.56 1.933e-16
94 9500.00 159.62 1.601e-17
95 10500.0 153.26 2.614e-17
96 11500.0 161.59 6.300e-18
97 12500.0 95.258 1.326e-16
98 13500.0 158.32 1.963e-17
99 14500.0 267.19 1.155e-17
100 15500.0 73.323 4.687e-17
101 16500.0 86.143 1.679e-16
102 17500.0 271.19 1.013e-17
103 18500.0 231.91 1.731e-17
104 19500.0 72.625 1.170e-16
105 20500.0 4.5181 3.659e-15
106 21500.0 12.062 2.188e-15
107 22500.0 576.04 2.455e-17
108 23500.0 563.46 2.754e-17
109 24500.0 628.62 2.445e-17
110 25500.0 423.47 5.324e-17
111 26500.0 420.09 1.792e-17
112 27500.0 376.33 4.411e-17
113 28500.0 194.69 1.120e-16
114 29500.0 377.65 4.456e-17
115 30500.0 310.25 6.328e-17
116 31500.0 60.231 1.456e-16
117 32500.0 335.39 4.799e-17
118 33500.0 262.47 2.567e-17
119 34500.0 92.358 1.249e-16
120 35500.0 141.35 7.469e-17
121 36500.0 119.24 1.882e-17
122 37500.0 40.933 7.381e-17
123 38500.0 6.5991 2.727e-16
124 39500.0 0.88043 7.036e-16
125 40500.0 0.69274 4.855e-16